

Tetrahedron Letters 41 (2000) 10357-10361

TETRAHEDRON LETTERS

Approaches to oximidines, lobatamides and related natural products: the coupling reactions of 3-iodoacrolein *O*-methyl oximes

Steven A. Raw and Richard J. K. Taylor*

Department of Chemistry, University of York, Heslington, York YO10 5DD, UK Received 27 September 2000; accepted 19 October 2000

Abstract

Both 2*E*- and 2*Z*-3-iodoacrolein *O*-methyl oximes are prepared in two steps from ethyl propiolate. Lithium–iodine exchange is effected and the resulting organolithium reagents added to several electrophiles, including styryl isocyanate which gives a conjugated *O*-methyl oxime enamide of the type found in the side chains of the oximidine, lobatamide and CJ-12950 natural products. The Pd(0) catalysed cross-coupling of these iodoalkenes is also explored. © 2000 Elsevier Science Ltd. All rights reserved.

The oximidines (e.g. oximidine I, 1),¹ the lobatamides (e.g. lobatamide C, 2)² and CJ-12950, 3^3 , all contain the unusual conjugated *O*-methyl oxime enamide side chain, in contrast to the other members of the salicylate family of antitumour natural products.⁴

As part of a programme to prepare salicylate natural products and their analogues for anti-cancer screening,⁵ we investigated routes to conjugated O-methyl oxime systems. The recent publications in this area by Kitahara et al.⁶ and Porco et al.⁷ prompt us to reveal our preliminary results.

^{*} Corresponding author. E-mail: rjkt1@york.ac.uk

^{0040-4039/00/\$ -} see front matter @ 2000 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(00)01862-1

Following our approach to the lansamides and lansiumamides,⁵ which we are currently applying to the synthesis of the apicularens, we envisaged the construction of the conjugated O-methyl oxime enamide side chain by organometallic addition to isocyanates, as shown in Scheme 1. Kitahara's group used the same approach.⁶

Synthesis of the precursor iodides **4a** and **4b** was achieved by the treatment of corresponding iodoacroleins **5a** and **5b**, readily derived from ethyl (2Z)-3-iodoacrylate **6**,⁸ with a mixture of methoxylamine hydrochloride and potassium hydroxide (Scheme 2). Oxime **4a** could only be isolated as an inseparable mixture of oxime isomers ($\sim 2:1$ trans:cis by ¹H NMR spectroscopy) but **4b** was isolated as separable *trans*- and *cis*-oxime isomers ($\sim 3:1$).⁹

With the iodides **4a** and **4b** in hand, their chemistry was investigated. First, the lithium-iodine exchange reaction and the addition of the resulting organolithium reagents to a variety of electrophiles was examined in order to establish the general applicability of *O*-methyl oxime containing organometallic reagents. The organolithium species derived from **4a**,**b** proved to be unstable, resulting in extensive decomposition when the reaction was attempted at temperatures above -78° C. Even at -78° C reaction times had to be limited to ≤ 10 minutes. Longer reaction times, or the use of a more coordinating solvent such as THF, led to significant decomposition. The results are summarised in Table 1.

As can be seen, the organolithium reagents derived from *trans*-4b and *cis*-4b underwent addition to anisaldehyde to give adducts 7 and 8 in ca. 70% yield (Table 1, entries i and ii). The corresponding reagent derived from *cis*-/*trans*-4a also gave the expected adduct 9, albeit in slightly lower yield (entry iii). These results confirmed the viability of O-alkyl oxime containing organolithium reagents. Further reactions were carried out to establish that aldehydes, ketones, amides and trialkoxyboranes were also suitable electrophiles (Table 1, entries iv–vii). Attempted

-1	02	250
1	0.5	55

Table 1									
Addition	reactions	of	lithiated	4a,b	to	various	electrophiles		

Entry	Substrate	Electrophile	Adduct	Yield (%)
(i)	trans-4b ¹⁰	NO H	OH 7 OMe	70
(ii)	cis-4b	No NH H		69
(iii)	4a	NO H		trans: 32, cis: 15 ^a
(iv)	trans-4b	→→→→→ H		64
(v)	trans-4b	\bigcirc	HO N. OME	61
(vi)	trans-4b	Ph N ⁰	Ph 12	62
(vii)	trans-4b	B(O ⁱ Pr) ₃	(HO) ₂ B 13	59
(viii)	trans-4b	Me ₃ C Cl	HO CMe ₃ MeO ^{-N} 14	17
(ix)	trans-4b	Ph ^N °C _{°O}	Ph	64
(x)	cis-4b	Ph ^N ^c C ₂₀	Ph	59
(xi)	4 a	Ph NSC SO	Ph 17 0 N ^{Me}	trans: 34, cis: 3 ^a

^a The oxime isomers of adducts 9 and 17 are separable by column chromatography.

alkylations using allyl iodide, benzyl bromide and styrene oxide were unsuccessful; pivaloyl chloride underwent double addition, giving 14 (entry viii). Additions to styryl isocyanate¹¹ were investigated next (Table 1, entries ix–xi). Again, *trans-*4b and *cis-*4b gave the expected adducts 15 and 16 in reasonable yield, whereas 4a gave a lower yield of 17. In the latter example, it appears that lithiated *trans-*4a undergoes isocyanate addition with reasonable efficiency (con-

10360

firming the results of Kitahara et al.⁶) whereas lithiated *cis*-4a appears to give only 3% of the expected adduct *cis*-17. It seems likely that *cis*-17 is unstable under basic conditions.

We also investigated the palladium(0) catalysed cross-coupling reactions of iodides 4a and 4b and boronic acid 13 (Table 2). The results shown were obtained using standard conditions¹²⁻¹⁴ and are unoptimised.

Entry	Substrate	Conditions	Coupling Partner	Adduct	Yield (%)
(i)	trans-4b	5% Pd(PPh ₃) ₄ , THF, 60 °C, 4 h	∽o SnBu₃	0 18	74
(ii)	trans-4b	5% Pd(PPh ₃) ₄ , K ₃ PO ₄ , dioxane, 60 °C, 10 h	B(OH)2	19 North Comments of the second secon	59
(iii)	13	5% PdCl ₂ (dppf), dioxane, 3 M KOH 60 °C, 10 h		N-OMe 19	50
(iv)	4a	5% PdCl ₂ (dppf), dioxane, 3 M KOH, 60 °C, 10 h	B(OH)2	20 N ^{~OMe}	45ª

		Table	2					
Pd(0)	catalysed	cross-coupling	reactions	of	4 a,	4b	and	13

^aca. 1.25:1 trans:cis by ¹H-NMR spectroscopy

Thus, *trans*-4b underwent efficient Stille and Suzuki coupling to give adducts 18 and 19 respectively (Table 2, entries i and ii). Adduct 19 was also obtained from the Suzuki coupling of vinyl boronic acid 13 (entry iii). Finally, the mixture of *cis*- and *trans*-4a proved to be acceptable Suzuki coupling substrates, giving 20 in reasonable yield (entry iv).

In summary, we have developed both organolithium and palladium-catalysed coupling routes for the preparation of a range of conjugated O-methyl oximes, including enamide analogues. We are currently applying this methodology to the synthesis of natural products 1-3 and related analogues.

Acknowledgements

We are grateful to the BBSRC for a Quota studentship (S.A.R).

References

- 1. Kim, J. W.; Shin-ya, K.; Furihata, K.; Hayakawa, Y.; Seto, H. J. Org. Chem. 1999, 64, 153.
- McKee, T. C.; Galinis, D. L.; Pannell, L. K.; Cardellina II, J. H.; Laakso, J.; Ireland, C. M.; Murray, L.; Capon, R. J.; Boyd, M. R. J. Org. Chem. 1998, 63, 7805.
- Dekker, K. A.; Aiello, R. J.; Hirai, H.; Inagaki, T.; Sakakibara, T.; Suzuki, Y.; Thompson, J. F.; Yamauchi, Y.; Kojima, N. J. Antibiot. 1998, 51, 14.
- Erickson, K. L.; Beutler, J. A.; Cardellina II, J. H.; Boyd, M. R. J. Org. Chem. 1997, 62, 8188. Jansen, R.; Kunze, B.; Reichenbach, H.; Höfle, G. Eur. J. Org. Chem. 2000, 913.

- 5. Stefanuti, I.; Smith, S. A.; Taylor, R. J. K. Tetrahedron Lett. 2000, 41, 3735.
- 6. Kuramochi, K.; Watanabe, H.; Kitahara, T. Synlett 2000, 3, 397.
- 7. Shen, R.; Porco, J. A. Org. Lett. 2000, 2, 1333.
- 8. Marek, I.; Meyer, C.; Normant, J.-F. Org. Synth. 1996, 74, 194.
- All new compounds were fully characterised by high field NMR spectroscopy and elemental analysis or HRMS.
 Typical procedure: A stirred solution of *n*-BuLi (1.50 mmol, 2.5 M in hexanes, 0.60 mL) in pentane:ether (3:2, 10 mL) was cooled to −78°C. To this was added a solution of *trans*-4b (1.00 mmol, 0.211 g) in pentane:ether (3:2, 2.5 mL) over ~6 min. 10 min after start of addition, a solution of *para*-anisaldehyde (1.55 mmol, 0.268 g) in pentane:ether (3:2, 1.5 mL) was added over 30 sec. After 10 min at −78°C, the mixture was warmed to ambient temperature. Extractive work up and column chromatography gave the product 7 (0.154 g, 70%) as a pale yellow
 - oil; $R_{\rm f}$ 0.26 (petrol ether:ether, 1:1); $v_{\rm max}$ (film) 3403 (br), 3000, 2938, 2901, 2837, 1611, 1586, 1513, 1463, 1249, 1175, 1087, 1044, 981, 898, 833 cm⁻¹; $\delta_{\rm H}$ (CDCl₃, 270 MHz) 2.50 (1 H, br s, OH), 3.79 (3 H, s, CH₃), 3.85 (3 H, s, CH₃), 5.23 (1 H, br d, *J* 5.5 Hz, CHOH), 6.12 (1 H, dd, *J* 5.5, 15.5 Hz, =CH–COH), 6.35 (1 H, dd, *J* 10, 15.5 Hz, =CH), 6.88 (2 H, d, *J* 8.5 Hz, ArH), 7.25 (2 H, d, *J* 8.5 Hz, ArH), 7.68 (1 H, d, *J* 10 Hz, HC=N); $\delta_{\rm C}$ (CDCl₃, 67.9 MHz) 55.3 (CH₃), 61.8 (CH₃), 73.7 (CH–OH), 114.1 (CH), 123.3 (CH), 127.8 (CH), 134.0 (Ar–C), 142.3 (Ar–CH), 149.6 (Ar–CH), 159.4 (Ar–C); m/z (CI) 222 (MH⁺) [HRMS (CI) calcd. for C₁₂H₁₆NO₃, 222.1130. Found: MH⁺ 222.1131 (0.2 ppm error)] [Found: C, 65.19; H, 7.12; N 6.14%. C₁₂H₁₅NO₃ requires C, 65.14; H, 6.83; N, 6.33%].
- 11. Brettle, R.; Mosedale, A. J. J. Chem. Soc., Perkin Trans. 1 1988, 2185.
- 12. Suzuki, A. In *Metal-catalysed Cross-coupling Reactions*; Diederich, F.; Stang, P. J., Eds.; Wiley-VCH: Weinheim, 1998; Chapter 2 and references cited therein.
- 13. Abe, S.; Miyaura, N.; Suzuki, A. Bull. Chem. Soc. Jpn. 1992, 65, 2863.
- 14. Suginome, M.; Matsuda, T.; Nakamura, H.; Ito, Y. Tetrahedron 1999, 55, 8787.